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Vibration—Rotation—Tunneling Levels of the Water Dimer from an ab Initio Potential
Surface with Flexible Monomers

I. Introduction

In order to understand the intriguing properties of water
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The 12-dimensional ab initio potential for the water dimer with flexible monomers from Huang et al. (J. Chem.
Phys. 2008, 128, 034312) was used in accurate calculations of the vibration—rotation—tunneling (VRT) levels
of (H,0), and (D,0), involving the intermolecular rovibrational and tunneling states as well as the
intramolecular vibrations. For the intermolecular VRT levels we used a 6 + 6d model in which the fast
intramolecular vibrations are adiabatically separated from the much slower intermolecular vibrations, tunneling
motions, and overall rotations. We also tested two six-dimensional (6d) rigid monomer models in which the
monomers were frozen either at their equilibrium geometry or at their ground state vibrationally averaged
geometry. All the results from the 6 + 6d model agree well with the large amount of detailed experimental
data available from high-resolution spectroscopy. For most of the parameters characterizing the spectra the
results of the two 6d rigid monomer models do not significantly differ from the 6 + 6d results. An exception
is the relatively large acceptor tunneling splitting, which was the only quantity for which the 6d model with
the monomers frozen at their equilibrium geometry was not in good agreement with the experimental data.
The 6d model with monomers at their vibrationally averaged geometry performs considerably better, and the
full 6 + 6d results agree with the measurements also for this quantity. For the excited intramolecular vibrations
we tested two 6 + 6d models. In the first model the excitation was assumed to be either on the donor in the
hydrogen bond or on the acceptor, and to hop from one monomer to the other upon donor—acceptor interchange.
In the second model the monomer excitation remains localized on a given monomer for all dimer geometries.
Almost the same frequencies of the intramolecular vibrations were found for the two models. The calculations
show considerable variations in the frequencies of the intramolecular modes for transitions involving different
tunneling levels and different values of the rotational quantum number K. For K = 0 — 0 transitions these
variations largely cancel, however. A comparison with experimental data is difficult, except for the acceptor
asymmetric stretch mode observed in high-resolution spectra, because it is not clear how much the different
transitions contribute to the (unresolved) peaks in most of the experimental spectra. The large red shift of the
donor bound OH stretch mode is correctly predicted, but the value calculated for this red shift is too small
by more than 20%. Also in the smaller shifts of the other modes we find relatively large errors. It is useful,
however, that our detailed calculations including all ground and excited state tunneling levels provide an
explanation for the splitting of the acceptor asymmetric stretch band observed in He nanodroplet spectra, as
well as for the fact that the other bands in these spectra show much smaller or no splittings.

that the CC-pol-8s potential is the most accurate six-
dimensional (6d) potential for rigid water monomers. It is
based on the same ab initio data as its predecessor, CC-pol,*

and ice by means of simulations, one has to know precisely
the complete water force field. It has become obvious that
many-body interactions between the water molecules play
an important role in determining the structure and dynamics
of the hydrogen bonded network in water, but it is also of
utmost importance to accurately know the water pair
potential."> Two high-quality water pair potentials, CC-pol-
8s and HBB, were recently obtained from ab initio electronic
structure calculations at the CCSD(T) [coupled cluster with
singles, doubles, and perturbatively included triples] level
for many geometries of the water dimer. In calculations of
the water dimer high-resolution spectrum?® it was established
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but the analytical form used to represent these data is
somewhat more complex and fits the data much more
accurately. Also the HBB potential™® is based on a large
number of ab initio data and an accurate analytical fit to these
data. Six-dimensional calculations of the water dimer spec-
trum similar to those made for the CC-pol-8s potential
confirm that the HBB potential is accurate, t00.° It slightly
underestimates the binding energy of the water dimer,
however.

Several attempts have been made to extract also the effects
of monomer flexibility in water from ab initio calculations by
constructing a full-dimensional (12d) potential surface for the
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water dimer.>”® The SAPT-5sf potential was tested in 12d
calculations of the water dimer vibration—rotation—tunneling
(VRT) levels® similar to those described in the present paper.
It still showed some of the small defects of its rigid monomer
predecessor, SAPT-5s, which was the first ab initio potential
that gave fairly good agreement with the measured high-
resolution data for the water dimer,””!' but needed some
empirical tuning to get full agreement. The 12d HBB potential
gave such good agreement with the experimental water dimer
spectrum in 6d calculations® that it is interesting to investigate
with this potential what are the effects of monomer flexibility
on the calculated water dimer spectrum. This investigation is
the topic of the present paper. Let us mention here that the 12d
HBB potential surface was obtained>® from ab initio calculations
at the CCSD(T) level for about 30 000 geometries of the water
dimer, followed by an accurate fit of the computed data points
in terms of symmetry-adapted polynomials in the exponentially
scaled interatomic distances.

Full 12d quantum calculations of the bound levels of the water
dimer by a method that is able to account for the large-amplitude
strongly anharmonic intermolecular vibrations and tunneling
processes are still not possible. A method has been devised,'?
however, to treat the 12 nuclear motion degrees of freedom in
the water dimer in a 6 + 6d adiabatic model. It is based on the
adiabatic separation between the six fast intramolecular vibra-
tions and the six much slower intermolecular vibrations and
tunneling motions, which is well justified at least when the
molecules are in their vibrational ground state. For vibrationally
excited monomers some complications arise that will be
discussed in detail below. Here we apply this method to the
12d potential HBB and compare the results with 6d calculations
based on rigid monomer models to investigate the effect of
monomer flexibility on the intermolecular vibration—rotation—
tunneling (VRT) levels. In addition, we use the 6 + 6d adiabatic
method to compute the frequency shifts of the monomer
vibrations. The method is outlined in section II; the results are
discussed and compared with experimental data in section III.
Section IV presents the conclusions.

II. Calculation of the Vibration—Rotation—Tunneling
Levels

In the global potential energy surface of the water dimer,
one finds 48 equally deep minima that correspond to 48
equivalent equilibrium structures. Starting from one minimum,
the dimer has access to seven other of these minima without
breaking any of the strong OH bonds within the monomers.
Hence, the barriers between these eight minima are relatively
low, on the order of a few hundreds of cm™!, and quantum
mechanical tunneling between the equivalent minima gives rise
to observable splittings in the water dimer high-resolution
spectrum. In terms of the molecular symmetry group'’ the
equivalent equilibrium structures are related by the interchange
of identical nuclei. The interchange operations between the eight
minima connected by tunneling are called “feasible”. Combined
with inversion, they generate the permutation—inversion (PI)
symmetry group Gje of the water dimer. The VRT levels of
this dimer are commonly labeled with the irreducible represen-
tations (irreps) Af, BT, A2 +, B3, and E* of G5 It was
demonstrated in several earlier papers'>®!114=18 that the VRT
levels of the water dimer measured by high-resolution micro-
wave and terahertz molecular beam spectroscopies'®~?’ provide
an extremely critical test of the water pair potential. In such a
test one has to ensure, however, that the VRT levels are very
accurately computed, so that all deviations between the calcu-
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lated levels and the experimental data are due only to the
remaining errors in the potential surface. In most of the previous
papers this was achieved by the use of a fully coupled treatment
in all six intermolecular degrees of freedom, with the monomers
frozen either at their isolated molecule equilibrium geometry
or at the average geometry of their vibrational ground state.

Leforestier et al.!> have presented a method to lift the
constraint of monomer rigidity and to consider all 12 internal
degrees of freedom of the water dimer, both inter- and
intramolecular. Here, we apply this method to the 12d HBB
potential.® As mentioned in the Introduction, the 6 + 6d method
of Leforestier et al. is based on the adiabatic separation between
the six fast intramolecular vibrations and the six much slower
intermolecular vibrations and tunneling motions of the water
dimer. The method is described in detail in ref 12; here we give
a brief summary.

The Hamiltonian for the nuclear motion of the water dimer
is written exactly in terms of 12 Jacobi coordinates. These
coordinates are obtained by defining two monomer frames with
their origins in the centers of mass of the monomers. The vector
R points from the origin of the coordinate frame on monomer
A to the origin of the frame on B, and the Euler angles €24, 25
determine the orientations of the monomer frames with respect
to a dimer frame with its z-axis along R. Only five of these
Euler angles are needed to determine the relative orientations
of the monomer frames; together with the distance R, the length
of the vector R, they form the six intermolecular coordinates.
The six intramolecular coordinates qa, qg define the geometries
of the monomers. The first step in the 6 + 6d method is to
obtain 6d adiabatic intermolecular potentials by computa-
tion of the intramolecular vibrational energy levels for each point
on a 6d grid in the intermolecular coordinates R, Q,, Q5. In
the second step the intermolecular VRT states are calculated
with the intermolecular terms of the kinetic energy operator in
the Hamiltonian and the adiabatic potential Vi(R,€24,Qg)
computed for the intramolecular ground or excited state i that
one wishes to consider.

The calculation of the adiabatic intermolecular potentials in
the first step proceeds as follows. For each intermolecular grid
point the geometries of monomers A and B, i.e., the coordinates
qa and qg, are first optimized. Then, monomer B is kept at its
optimum geometry and the vibrational eigenvalues of monomer
A, in the field of monomer B, are obtained from fully
anharmonic three-dimensional (3d) DVR (discrete variable
representation) calculations in the coordinates q,. Analogously,
the vibrational eigenvalues of monomer B, in the field of
monomer A with qa optimized, are obtained from 3d DVR
calculations in qg. In ref 12 it was checked by perturbation
theory that the simultaneous deformation of A and B from their
optimum geometries has only a negligible effect on the results.
The adiabatic intermolecular potentials V(R,24,€25) are con-
structed by adding one of the vibrational eigenvalues of
monomer A to one of the eigenvalues of monomer B, for each
point on the 6d dimer grid. If both monomers are in their
vibrational ground state, the dimer VRT states are calculated
on the lowest adiabatic intermolecular potential surface with i
= 0. In calculations of the frequency shifts of the monomer
vibrations, one uses the 6d intermolecular potentials with i > 0
obtained by adding, for each 6d dimer grid point, one of the
excited vibrational eigenvalues of one monomer to the ground
state eigenvalue of the other monomer.

In the second step of the 6 + 6d method, the calculation of
the 6d intermolecular VRT states on one of the adiabatic
potentials Vi(R,Q4,L25), we used a pseudospectral method that
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employs both an analytical basis and a numerical grid basis. In
the Lanczos algorithm applied to iteratively determine the lower
eigenvalues of the Hamiltonian operator, Krylov spaces are
constructed which are spanned by so-called Lanczos vectors.
These vectors are obtained by repeatedly operating with the
Hamiltonian on an initial (arbitrary) seed vector. The kinetic
energy operator is rather easily evaluated in the analytical basis,
while the potential is diagonal in the grid basis: its elements
are simply the values of the potential at the grid points. The
Lanczos method is applied in the analytical basis, adapted to
the irreps of the PI group G¢. In the potential energy calculation,
one transforms to the grid basis, multiplies with the potential
on the grid, and then transforms back to the symmetry-adapted
analytical basis. This makes this method very economical both
in the use of storage and in computer time. The overall rotation
of the dimer with total angular momentum J is included as well.
The angular basis functions are coupled products of Wigner
D-functions for the internal and overall rotations, and the angular
grid points are the appropriate quadrature points.?® A potential-
optimized DVR method is used for the coordinate R. Note that
we also included the off-diagonal Coriolis coupling between
angular basis functions of different K, the projection of the
angular momentum J on the dimer axis R. Still, this quantum
number K remains sufficiently well conserved to use it as a
label of the VRT levels, in addition to J. In some previous work
on the water dimer?® off-diagonal Coriolis coupling was omitted,
but it was shown in ref 3 that it has a nonnegligible effect on
the end-over-end rotational constants B + C.

In principle, the intramolecular vibrations can be excited in
combination with the intermolecular vibrations. Here, we are
interested in the frequency shifts of the intramolecular vibrations,
and for i > 0 we only consider the intermolecular vibrational
ground state. Both the ground and vibrationally excited states
are split by tunneling into levels of different PI symmetries,
however. One should realize that the number of grid points
required to obtain well-converged intermolecular VRT states
is very large, on the order of 107 when the PI symmetry is
exploited. Therefore, the calculation of the monomer vibrational
eigenvalues in the first step had to be performed many times.

A basic problem arises with the 6 + 6d adiabatic separation
between the inter- and intramolecular coordinates if one of the
monomers is vibrationally excited. If the excitation is localized
on a given monomer the PI symmetry is broken, because the
two monomers are no longer equivalent. As a result, the 6d
adiabatic potentials for the excited states that are obtained from
the vibrational eigenvalues of the monomers are not symmetric
with respect to the interchange of the two monomers. In reality,
the excitation can hop from one monomer to the other, and in
fact it does so, in combination with the donor—acceptor
interchange tunneling that interchanges the role of the two
monomers in the hydrogen bond. From the high-resolution
spectral data available? it can be concluded, however, that the
interchange tunneling splitting is reduced by an order of
magnitude in the vibrationally excited state with respect to the
ground state. In other words, donor—acceptor interchange is
hindered in the excited state because it has to be accompanied
by a simultaneous hop of the vibrational excitation from one
monomer to the other. A fully correct theoretical description
of this process requires the use of two equivalent potential
surfaces. Each of these potentials is not symmetric with respect
to interchange. These two potentials can be obtained from
monomer calculations with the assumption that the excitation
stays localized on one monomer or on the other one, irrespective
of the dimer geometry. Equivalently, the second potential can
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TABLE 1: Monomer Data Computed from the HBB
Potential and Used in 6d Calculations

ron (A) HOH angle (deg)
H,O
equilibrium geometry 0.9615 104.20
vibration averaged 0.9794 104.09
D,O
equilibrium geometry 0.9615 104.20
vibration averaged 0.9745 104.09

simply be obtained from the first one by an interchange of the
monomer coordinates. The corresponding treatment of the
excited intermolecular VRT states, with the use of the full PI
symmetry, requires the simultaneous inclusion of both these
potentials. In other words, one has to use a nonadiabatic model
involving two potential surfaces, corresponding to vibrational
states on each of the two monomers.

In our calculations we used a single-potential approach and
applied two different approximations to a full nonadiabatic
treatment. In the first approximation we defined a single effective
symmetry-adapted potential by using the appropriate excited
state eigenvalue of the donor or the acceptor, irrespective of
which monomer plays this role. This requires a criterion to
distinguish the donor from the acceptor, even for dimer
geometries that are not obviously hydrogen bonded. Such a
criterion, involving the smallest intermolecular O—H distance,
is given in ref 12. This model seems realistic as it appears from
the experimental data (discussed below) that the monomer
vibrational modes in the water dimer can indeed be assigned to
the donor or to the acceptor. Our second model assumes that
the excitation stays localized on a given monomer for all dimer
geometries. The intermolecular potential is not symmetric with
respect to interchange of the monomers; hence, we used only
the subgroup Gs obtained from the full PI group G,¢ by omitting
the interchange operation P,g. Instead of using only the lowest
eigenvalue for each Gy irrep, we then considered the lowest
two eigenvalues for each Gy irrep. In practice, it was no problem
to assign these to a vibration of the donor or the acceptor. The
comparison of the monomer frequency shifts obtained from
these two extreme models gave us an indication of their quality,
with respect to the full nonadiabatic two-state treatment. One
should realize, of course, that these models cannot be used to
compute the excited state interchange tunneling splitting. The
first model strongly overestimates this splitting; the second
model makes the two monomers inequivalent and, thereby,
quenches (or at least underestimates) interchange tunneling.

In addition to the 6 + 6d calculations on the full 12d
potential HBB, we performed 6d calculations of the inter-
molecular VRT levels. The corresponding potentials were
obtained from the full 12d potential by fixing the monomer
geometries, either at their calculated free monomer equilib-
rium values or at the values corresponding to a vibrationally
averaged free monomer geometry. Both the monomer equi-
librium coordinates and the vibrationally averaged values
were obtained from the 12d potential of ref 6 by moving the
other monomer to a very large distance. In the calculation
of the vibrationally averaged monomer coordinates, we
computed the free monomer vibrational ground state by the
same 3d DVR method as used in the full 6 + 6d calculations
(described in the last paragraph of this section). The resulting
monomer coordinates are listed in Table 1.

The quantities that we use to characterize the spectra are the
same as used by the experimentalists and are defined in refs
24—27. For K = 0 the origins o, and o, are the average energies
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of the J = 0 levels of AT and Bf symmetry and of A5 and By
symmetry, respectively. The end-over-end rotational constant
B + C for K = 0 was obtained as the difference between levels
with / = 1 and J = 0. For K #= 0 the levels occur in nearly
degenerate pairs, AT, B and AT, B7. The origins 0, and 0, were
obtained from averaging the AT and BT levels and the AT and
B5 levels, respectively. Then, according to the convention used
by experimentalists, the origins were calculated from the levels
with the lowest value of J (=K) by subtraction of (B + C)K/2.
The much larger rotational constant A for rotation about the
prolate axis (nearly coinciding with the vector R) was obtained
as the difference between the K = 1 and K = 0 averages (o, +
02)/2.

The largest tunneling splitting, denoted by a(K), is the so-
called acceptor splitting, which is strongly K dependent. It is
caused by an interchange of the two hydrogen atoms of the
hydrogen bond acceptor monomer. The splitting a(K) can be
extracted from the (calculated or measured) spectra as the energy
difference between the origins o, and o,. The interchange
splittings, denoted by i; and i#,, correspond to the interchange
of the donor and acceptor molecules. These tunneling splittings
can be extracted from the spectra as well: i; is the difference
between the Bi and AT levels and i, is the difference between
the BF and A7 levels. The very small shifts of the E* levels
with respect to the average energies of the AT and Bf levels
and the AF and B5 levels by bifurcation tunneling are not
considered here; they were discussed in ref 3.

At the end of this section we list some technical details. The
intramolecular Jacobi coordinates qa and qp were ryy, the H—H
distance; roy, the distance from the O nucleus to the midpoint
M between the two H atoms; and 6, the angle between the
vectors ryy and roy. The DVR grids used in the calculations
of the monomer vibrational states consisted of seven equidistant
points in both ryy and roym, and 29 Legendre quadrature points
in 6. In the 6d calculations of the intermolecular VRT states
on the adiabatic potentials, we used an analytic basis of Wigner
D-functions on the monomers A and B with maximum values
of ja and jg equal to 11 for (H,O), and 12 for (D,0),. The
corresponding DVR grids consisted of 14 and 15 Legendre
quadrature points in the two polar angles for (H,O), and (D,0),,
respectively, with 24 and 30 equidistant points in the three
azimuthal angles. The primitive radial basis contained 30 sine
functions, and the corresponding DVR grid had 33 points in
the range 4 < R < 10 ao. The potential-optimized contraction
scheme according to Harris et al.*® was used with nine values
of R.

III. Discussion of the Results

Before discussing the results for the dimer, let us briefly
consider the H,O and D,O monomer properties given in Table
1. These properties, used in our 6d rigid monomer calculations,
were obtained from the HBB potential by choosing a sufficiently
large value of the intermolecular distance. The equilibrium value
of 0.9615 A for the OH bond length is somewhat larger than
the best available value of 0.9589 A" Accordingly, the
vibrationally averaged values of roy and rop are slightly too
large also and, as one will see below, the OH stretch frequency
is too small by about 18 cm™!. The HOH angle of 104.20° is
very close to the best calculated value of 104.16°,3' and the
HOH bend frequency (see below) agrees well with experimental
data. Since these features were derived from the 12d potential
HBB used for the calculation of the dimer VRT states with
flexible monomers, and we wish to compare with 6d rigid
monomer results on the same potential surface, we have not
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tried to correct for these small differences. We could have
extracted only the intermolecular part of the HBB potential and
replaced its intramolecular contribution by a very accurately
known water monomer potential,*>** but the intramolecular
contribution is not explicitly given and we wanted to use the
HBB potential as it was calculated and fitted.>°

III.A. Intermolecular VRT States. The dimer VRT levels
of (H,0), and (D,0), computed in 12d (actually 6 + 6d)
calculations from the HBB potential are given in Tables 2 and
3, respectively. These tables also contain the corresponding
results from 6d rigid monomer calculations with the monomers
fixed at their equilibrium geometry or at their ground state
vibrationally averaged geometry. The latter was chosen because
it has been demonstrated® that the choice of vibrationally
averaged geometries in rigid monomer calculations gives results
that, in general, are closer to the results from full flexible
monomer calculations than the results obtained when the
monomers are frozen at their equilibrium geometries. In ref 34
this was numerically illustrated on a non-hydrogen-bonded
complex, Ar—HF. One will see below that it also holds for a
strongly hydrogen-bonded complex. Moreover, the accurate
CC-pol!'* and CC-pol-8s® rigid monomer potentials for water
dimer are based on the vibrationally averaged monomer
geometry and we would like to estimate the additional effects
that will be obtained when these potentials are extended with
monomer flexibility.

First we consider the dissociation energy D,. The value of
D, from 12d calculations is larger than the value from 6d
calculations with the monomers at their equilibrium geometry
by 24.0 cm™! for (H,0), and by 23.4 cm™! for (D,0),. This
difference is caused by the lowering of the monomer zero point
vibrational energies in the dimer. In section III.B we show that
for some of the monomer modes there is an upward shift of the
fundamental frequencies, but that indeed the downward shifts,
especially for the donor bound OH stretch mode, are more
dominant. The values of D, for (H,O), and (D,O), from the
12d (actually 6 + 6d) calculations, 1022 and 1161 cm™', may
be compared with the values of 1040 and 1169 cm™! from 12d
diffusional quantum Monte Carlo calculations.® In the 6d
calculations with monomers frozen at their vibrationally aver-
aged geometry, the intermolecular potential used is given relative
to the energy of the monomers at this geometry, which is higher
than the monomer equilibrium energy by 126.6 cm™! per
monomer. The well depth D, in this intermolecular potential is
1709 cm™! for (H,O), and 1694 cm™' for (D,0),, while it is
1657 cm™! for the potential with the monomers at their
equilibrium geometry and 1666 cm™' when the monomers are
relaxed. These differences in the D, values explain the corre-
sponding differences in the D, values. The experimental values
of Dy for (H,0), and (D,0), have large uncertainties. We should
mention that the value of D, for the HBB potential, 19.9 kJ/
mol, is smaller than the best calculated value’! of 20.99 kJ/mol
by 91 cm™'. We expect, therefore, that our values of Dy are too
low also.

The dimer VRT levels are characterized by the same
quantities that have been extracted from the experimental high-
resolution spectra: the dimer rotational constants A and B + C,
the band origins o, and o0, of the intermolecular vibrations of
different PI symmetries for K = 0 and K = 1, and the level
splittings a(K), iy, and i, caused by acceptor tunneling and
donor—acceptor interchange tunneling. The A" and A” labels
of the intermolecular vibrations denote their even or odd
symmetry under reflection in the symmetry plane of the
equilibrium structure with point group Ci.
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TABLE 2: Properties of (H,0), (in cm™!) Calculated with the HBB Potential in 12d Calculations, Compared with Results from
6d Rigid Monomer Calculations and Experimental Data From Refs 20, 21, and 25—27¢

6d (equilib) 6d (vib av) 12d experiment
dissociation energy
Dy 997.7 1029.6 1021.7
rotational constants
A 7.46 7.54 7.73 7.44/7.59
B+C 0.4016 0.4070 0.3998 0.4112
acceptor tunneling splittings (ground state)
a(K=0) 13.31 12.22 10.83
a(K=1) 3.20 2.93 2.37
sum 16.52 15.15 13.20 13.92
interchange tunneling splittings (ground state)
K=0 iy 0.745 0.785 0.717 0.752
i 0.641 0.681 0.647 0.651
K=1 i 0.691 0.740 0.677 0.705
i» 0.519 0.555 0.522 0.541
vibrational band origins
ground state (A”) K=0 0, 0 0 0 0
02 13.31 12.22 10.83 11.18%
K=1 01 15.72 15.12 14.33 14.39
02 12.52 12.20 11.95 11.66
donor torsion (A”) K=0 0, 115.64 115.07 116.03
02 60.64 62.22 66.15 64.52
K=1 01 85.74 86.40 89.52 87.75
02 92.47 92.23 93.49
acceptor wag (A”) K=0 0 106.82 105.81 103.52 107.93
02 106.08 106.03 103.26 108.89
K=1 01 106.77 107.29 106.19 109.98
02 121.07 121.12 119.79 123.56
acceptor twist (A”) K=0 01 130.23 128.86 128.29
02 116.19 117.38 118.60 120.19
K=1 01 141.10 141.19 140.19
02 135.04 135.37 134.39
donor torsion overtone (A”) K=0 01 126.75 127.98 130.46
0> 146.86 147.91 145.83 153.62
K=1 01 148.94 150.70 149.51
02 146.32 148.34 147.49
stretch (A”) K=0 01 139.44 142.17 141.78
0> 183.91 183.97 182.30

“In the rigid monomer model we used the equilibrium geometry of the free monomers or the ground state vibrationally averaged geometry;
see Table 1. All symbols are defined in the text. * Since the experimental values of 0, were given relative to the ground state value of 0,, we
added the estimated ground state acceptor splitting a(K=0) = 11.18) cm™! ! to all experimental values.

Note that the 6d results for fixed monomers in their
equilibrium geometry differ slightly from those obtained for the
same HBB potential in ref 6 because we now used the method
of Leforestier et al., whereas in ref 6 they were computed by
the method of Groenenboom et al.!' Although in both methods
the basis set, grid size, etc., were converged, some small
differences remain that result mostly from the truncation of the
spherical expansion of the potential in the method of Groenen-
boom et al.; cf. ref 3. Note also that we now included
off-diagonal Coriolis coupling, while it was omitted in ref 6.
As established in ref 3, the inclusion of off-diagonal Coriolis
coupling decreases the B + C values by about 0.01 cm™! for
(H,0), and by almost 0.02 cm™! for (D,0),.

When comparing the 6d and 12d results in Tables 2 and 3,
we notice that most quantities do not change much. In other
words, most of the properties considered in the comparison with
experimental spectroscopic data are not very sensitive to the
rigid monomer approximation. The only really significant change
occurs for the acceptor tunneling splitting a(K), which decreases
by 25% for (H,0), and by 38% for (D,0), when the monomers
become flexible. This finding is very satisfactory as it was
concluded in ref 6 that all properties calculated from the HBB
potential in 6d calculations agreed well with the experimental
data, except for the acceptor tunneling splitting which was 19%

too high for (H,0), and 31% too high for (D,0),. The acceptor
tunneling splitting obtained from the calculations with flexible
monomers agrees well with experiment; the remaining errors
are only 5% for both isotopologues. The already good agreement
of the other properties stays intact. Another significant change
seems to occur for the ground state origins o, and o, for K =
0 and K = 1, but these are in fact mostly determined by the
ground state acceptor splittings a(K).

When looking in more detail, we see changes of a few
percent, at most, in the other quantities as well, but they are
less systematic. A relatively large change of about 9% occurs,
for example, in the lower origin o0, of the donor torsion mode.
One should realize, however, that this quantity is partly
determined by the acceptor splitting for this mode, which is
much larger than for the ground state. Also for this property
the agreement with experiment improves when the monomers
are made flexible. For other quantities, where the changes are
still smaller and less systematic, the agreement with the
experimental data is not always improved. The remaining
discrepancies are quite small, however.

It is interesting to consider the 6d model with the monomers
frozen at their vibrationally averaged geometry, especially for
the quantity for which the difference between the 6d and 12d
results is significant: the acceptor splitting. As expected from
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TABLE 3: Properties of (D,0), (in cm™!) Calculated with the HBB Potential in 12d Calculations, Compared with the Results
from 6d Rigid Monomer Calculations and Experimental Data from Refs 19, 22—24, 26, and 27°

6d (equilib) 6d (vib av) 12d experiment
dissociation energy
D, 1137.6 1163.9 1161.0
rotational constants
A 4.19 4.17 4.16 4.17
B+C 0.3533 0.3540 0.3547 0.3622
acceptor tunneling splittings (ground state)
a(K=0) 2.37 2.06 1.74 1.77
a(K=1) 0.76 0.65 0.52 0.62
sum 3.13 2.71 2.26 2.39
interchange tunneling splittings (ground state)
K=0 i 0.0399 0.0419 0.0386 0.0391
ir 0.0367 0.0387 0.0364 0.0361
K=1 i 0.0364 0.0386 0.0358 0.0359
ir 0.0331 0.0351 0.0329 0.0331
vibrational band origins
ground state (A”) K=0 0, 0 0 0 0
0, 2.37 2.06 1.74 1.77°
K=1 04 5.75 5.53 5.29 5.36
0, 5.00 4.88 4.77 4.74
donor torsion (A”) K=0 01 75.15 75.30 76.67 75.38
0y 55.63 57.55 60.50 59.59
K=1 04 64.98 66.53 69.20 68.27
0, 69.21 70.37 72.21 71.81
acceptor wag (A”) K=0 01 78.82 79.67 78.82 82.64
0y 80.30 81.44 80.15 84.40
K=1 04 81.76 82.91 82.13 85.57
0, 86.14 86.93 85.73 89.56
acceptor twist (A”) K=0 01 90.00 90.29 90.28 9291
0, 87.17 87.94 88.39 90.37
K=1 04 95.86 96.42 96.15
0> 93.41 93.97 94.12
donor torsion overtone (A”) K=0 01 98.59 101.02 103.74 104.24
0, 129.58 130.20 130.02
K=1 04 122.52 122.85 124.27
0, 114.23 115.15 117.39
donor torsion + acceptor wag (A”) K=0 04 129.18 131.36 132.60
0, 135.96 136.28 136.91
stretch (A”) K=0 04 130.99 133.23 133.50
0, 141.94 142.83 142.73

“In the rigid monomer model we used the equilibrium geometry of the free monomers or the ground state vibrationally averaged geometry;
see Table 1. All symbols are defined in the text. * Since the experimental values of 0, were given relative to the ground state value of 0,, we
added the experimental estimate for the ground state acceptor splitting a(K=0) = 53 GHz = 1.7679 cm™' to all experimental values.

the analysis in ref 34, use of the vibrationally averaged geometry
for the monomers indeed gives results that are closer to the full
12d results than the 6d results for monomers at their equilibrium
geometry. The deviations of the acceptor splitting from the 12d
model by 25% and 38% [for (H,0), and (D,0),, respectively]
for the equilibrium geometry 6d model are reduced to 15% and
20% for the 6d model with monomers at the vibrationally
averaged geometry. This finding is useful also in view of the
results obtained from the CC-pol-8s potential,® in which the
monomers were kept at their vibrationally averaged geometry.
The agreement with the experimental spectroscopic data for
(H,0), and (D,0); in 6d calculations with this potential® was
even better than for the HBB potential.® Again, the only quantity
that deviated significantly from the measurements was the
acceptor tunneling splitting. However, the overestimate of this
quantity with respect to the experimental data was only 10%
for (H,0), and 12% for (D,0),, considerably smaller than for
the 6d model with monomers at their equilibrium geometry.
From the present results one can conclude that this smaller
overestimate will probably be corrected for when the monomers
are made flexible.

The 6d rigid monomer results in ref 6 showed a remarkably
good agreement of the end-over-end rotational constant B + C

with the experimental data. Here, we find that the effect of
monomer flexibility on B + C is very small, but we confirm
the conclusion in ref 3 that the full inclusion of Coriolis coupling
leads to a significant change in the value of B + C. It should
be kept in mind, however, that this change has only become
significant because of the high level of agreement with experi-
ment that we have now reached. Therefore, we conclude that
the excellent agreement with the experimental values of B + C
in ref 6 was partly fortuitous. If Coriolis coupling is fully taken
into account, the B + C values become slightly too small. This
is in line with the dimer binding energy D. being somewhat
underestimated by the HBB potential and the equilibrium
distance R. being slightly too large.

IIL.B. Frequency Shifts of the Monomer Vibrations. The
vibrational frequencies of free H,O calculated with the HBB
potential are 1595.39, 3638.49, and 3738.20 cm™! for the HOH
bend, the symmetric OH stretch, and the asymmetric OH stretch,
respectively. The experimental values are 1594.59, 3656.65, and
3755.79 cm™'.35 Thus we see that the bend frequency agrees
quite well with experiment, but that the OH stretch frequencies
are too low by about 18 cm™!. Water monomer potentials are
available*>* that produce these fundamental frequencies in much
better agreement with experiment, but we are interested in the
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TABLE 4: Frequency Shifts of the Monomer Vibrations in
(H,0), with Respect to the Calculated Free Monomer
Frequencies, Obtained from the G,s and Gs Models
Explained in the Text*

transition J = 0 — 1 frequency shift (cm™")

Gis Gs

symmetry K — K model model
donor bend AT — AT 0—0 10.51 10.09
donor bound OH stretch AT — Ay 0—0 —41.16 —41.42
donor free OH stretch AT — AT 0—0 —0.70 —1.01
acceptor bend AT — AT 0—0 3.47 3.08
acceptor sym stretch AT — AT 0—0 0.69 0.26
acceptor asym stretch Ay — Af 0—1 9.47 9.86

“The shifts of the donor bound OH and free OH stretch modes
are given relative to the symmetric and asymmetric stretch
frequencies of free H,O, respectively.

frequency shifts in the water dimer and we expect these to be
fairly accurate, since the discrepancy of the monomer OH stretch
frequencies is only 0.5%.

In section II we explained that the adiabatic 6 + 6d
approximation does not apply directly, as in the ground state,
if one of the monomers is vibrationally excited. We proposed
two approximate 6 + 6d adiabatic models that will probably
give a good approximation to the “two-state” nonadiabatic model
that seems appropriate for the vibrationally excited states. In
the first model it is assumed that the vibrational excitation hops
from one monomer to the other, simultaneously with the
donor—acceptor interchange that occurs by quantum mechanical
tunneling. In other words, it is always the donor or the acceptor
that is excited, irrespective of which monomer fulfills this role.
The adiabatic dimer 6d potential then has the full G, symmetry,
and we call this the G;4 model. In the second model, on the
contrary, the excitation is assumed to stay on a given monomer,
A or B, independently of whether this monomer is the donor
or the acceptor. The adiabatic approximation then yields a 6d
dimer potential that is slightly asymmetric with respect to the
interchange Pap of the two monomers. Hence, the PI symmetry
of the dimer Hamiltonian is reduced from G4 to Gg and we
call this the Gs model. In reality the monomer vibrational
excitation hops from one monomer to the other upon donor—
acceptor interchange, but the interchange is much slower in the
excited state than it is in the vibrational ground state.?® Therefore
it may be expected that a comparison of the results of the Gy
and Gg models for the vibrational frequency shifts will give us
a good indication of the accuracy of the shifts calculated by
either model.

The frequency shift of each monomer vibration was obtained
by subtracting the energy of the dimer ground state level
computed on the lowest adiabatic 6d potential (with both
monomers in their ground state) from the dimer ground state
level computed on the excited adiabatic potential obtained for
the corresponding monomer vibration. In the Gg model one can
choose which monomer is excited, A or B; the results should
be the same. We tried both and found that the calculated
frequency shifts are indeed the same. Since a given monomer
excited state gives rise to two dimer excitations in the Gg model,
one on the donor and one on the acceptor, we had to consider
the lowest two eigenvalues from each calculation. By compari-
son with the shifts obtained from the G4 model, it is im-
mediately clear how to assign these two eigenvalues. A
comparison of the results from the G and Gg models is given
in Table 4. These results were computed with a somewhat
smaller dimer basis than used in the final calculations: internal
rotor basis functions with a maximum ja, jg of 10 instead of 11
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and a maximum ku, kg of 8 instead of 11. It is clear from Table
4 that the shifts from the two models are very similar. Each
irrep of Gg is induced to two irreps of Gjg through the
interchange operation P,g. For example, the Gy irrep A{ yields
the G¢ irreps AT and Bf, A5 yields A5 and B3, etc. The small
differences between the shifts calculated by the two models are
about half the size of the ground state interchange tunneling
splitting between the Bf and A{ levels in Gyg; cf. Table 2. All
further calculations were made with the G model in the full
basis.

In order to explain the symmetry of the intramolecular
vibrations and the appropriate selection rules, we start with the
observation that the water dimer in its equilibrium geometry
has point group symmetry C;. The donor monomer lies in the
plane of reflection symmetry, and its symmetric and asymmetric
OH stretch modes become localized. The localized modes are
the donor bound OH and free OH stretch modes in the dimer;
these are both of A” symmetry. The two hydrogen atoms of the
acceptor monomer are not in the symmetry plane, but are
interchanged by the reflection symmetry operator. The acceptor
symmetric and asymmetric OH stretch modes can still be
distinguished by their respective A” and A” symmetries in the
dimer. The HOH bend modes of both monomers have A’
symmetry in the dimer. In more global terms, considering the
eight equivalent equilibrium geometries connected by the
operations of the PI group Gy, the intramolecular vibrations
are all of AT symmetry, except for the acceptor asymmetric OH
stretch, which is of A3 symmetry. Actually, if the acceptor
asymmetric stretch mode were adapted to the full G¢ symmetry,
one would obtain A3 and Bf symmetry components, but we
already explained above that the adiabatic separation of the
monomer vibrational coordinates and the intermolecular coor-
dinates does not apply to the excited intramolecular vibrations.
Hence, it is reasonable to apply the selection rules of the
subgroup Gs, as it was done in the interpretation of the high-
resolution spectra in ref 29. In Gg symmetry the Gy irreps A3
and BJ become equivalent. If one (or more) of the intermolecular
(tunneling or vibrational) modes is excited, their symmetries
should be combined with those of the intramolecular modes,
as well as with those of the overall rotation functions of the
dimer. The transition dipole moment operator has A} symmetry,
which tells us that transitions are allowed between irreps of the
same type, except for the “+” labels that must be reversed. This
is a strict selection rule. In addition, there are approximate
selection rules based on the separability between the intra- and
intermolecular vibrations. Furthermore, there may be ap-
proximate selection rules if the vibrations have small amplitudes
and can be well separated from the overall rotations. This does
not apply to the intermolecular vibrations,*® but it holds for the
intramolecular modes which obey the selection rules of the point
group C,. All fundamental intramolecular modes are allowed
in the water dimer, as they are in the free monomers.

Table 5 lists the calculated frequency shifts of the monomer
modes in the dimer with no intermolecular vibrations excited.
The different symmetries indicated refer to the tunneling levels
of the dimer vibrational ground state. It should be kept in mind
that for (H,0), the AT, Bf, AF, and B7 levels have nuclear spin
statistical weights 1, 0, 3, and 6, respectively. In addition, there
are transitions between the levels of EX symmetry with weight
3 which are not shown; their shifts are intermediate between
those involving the Af, A¥ and Bi, B5 levels. The small
differences between the shifts of the transitions involving the
ground state AT and Bf levels and the A7 and B; levels are due
to the interchange tunneling splittings between these levels. The



12292 J. Phys. Chem. A, Vol. 113, No. 44, 2009

TABLE 5: Calculated Frequency Shifts of the Monomer
Vibrations in (H,O0), for / = 0 — 1 and J = 1 — 0 Dimer
Transitions”

frequency shift (cm™")

intramolecular
mode symmetry K=0—0 K=0—1 K=1—0
donor bend AT — AT 10.526 24.494 —6.008
Bf — By 8.917 22.932 —4.439
Ay — AT 10.130 11.215 6.998
By — B 8.686 9.914 8.317
donor bound AT — AT —41.201 —27.864 —57.351
OH stretch
Bf — By —42.425 —29.064 —56.167
Ay — AT —42.583 —40.880 —45.388
B, — B —43.699 —41.903 —44.397
donor free AT — AT —0.999 12.745 —17.228
OH stretch
Bf — By —2.306 11.475 —15.961
Ay — AT —1.965 —0.362 —4.855
B, — B —3.170 —1.455 —3.774
acceptor bend AT — AT 3.464 17.597 —12.892
Bf — By 2.033 16.211 —11.500
Ay — AT 3.424 4.268 0.447
By — B 2.134 3.097 1.612
acceptor sym stretch A — Ay 0.686 14.424 —15.788
Bf — By —0.864 12.916 —14.278
Ay — AT —0.006 1.297 —3.090
By — B —1.403 0.042 —1.818
acceptor N AT — A5 18.533 —5.604
asym stretc
Bf — By 18.403 —5.333
Ay — AT 9.712 1.802
By — Bf 9.827 1.863

“The symmetries indicated pertain to the intermolecular
tunneling levels that produce allowed transitions in combination
with the intramolecular mode. For the K = 1 — 0 transitions the
symmetries of the initial and final states are reversed.

energy gap between the AT, Bf levels and the A5, B> levels,
caused by acceptor tunneling, is much larger. This gap is not
visible in the frequency shifts of the K = 0 — 0 transitions
because these transitions are from the lower to the lower or
from the upper to the upper acceptor tunneling levels. Such
transitions are not allowed for the acceptor asymmetric stretch
mode, due to the AT symmetry of this mode. The acceptor
tunneling splitting is considerably smaller for K = 1 than for K
= 0 and the order of the tunneling levels is reversed; hence,
the K =0— 1 and K = 1 — O transitions have rather different
frequency shifts for transitions involving the AT, BT levels and
the A5, B; levels.

The accuracy of the experimental data available for the
intramolecular modes in the water dimer is quite different for
the different modes. For most of the modes it is not possible to
give a detailed comparison of the different allowed transitions
calculated and listed in Table 5 with the measured spectra. The
most direct comparison can be made with the acceptor asym-
metric stretch spectrum that was measured in high resolution
by Huang and Miller.”” We will therefore discuss this mode
first and then consider the acceptor symmetric stretch mode,
next the donor bound and free OH stretch modes, and, finally,
the two HOH bend modes.

The high-resolution spectrum of the acceptor asymmetric
stretch mode in ref 29 contains three different bands corre-
sponding tothe K=1—0,K=0—1l,and K=1—2
transitions, and many rotational lines were assigned and fitted.
The frequencies obtained for the K =1 —0and K =0 — 1
transitions of A7 — A symmetry are 3738.4 and 3752.6 cm™!,
respectively, which corresponds to shifts of —17.4 and —3.2
cm™! with respect to the HyO monomer asymmetric stretch
frequency. Our calculated values for these shifts are —5.5 and
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9.8 cm™!. The same mode was observed by Kuyanov and
Vilesov?’ for the water dimer in He nanodroplets in a molecular
beam setup. These authors reported two peaks with frequency
shifts of —3.4 and 4.4 cm™ . These are probably not the K = 1
— 0 and K = 0 — 1 transitions observed by Huang and Miller,
since the energy gap between them is smaller by nearly a factor
of 2 and it is believed that the K = 1 levels are not populated
at the temperature of 0.4 K of the He droplets. Our calculations
show that they are probably due to the A3, By and A}, Bf
tunneling components of the K = 0 — 1 transition. We obtain
shifts of 9.8 and 18.5 cm™! for these components. All these
data lead to the conclusion that the energy gaps between the
various bands observed for this mode are correctly reproduced
by our calculations but that our frequencies are too high by
12—14 cm™ ..

Huang and Miller® also reported a partially resolved band
for the acceptor symmetric stretch mode, but this band was
later’®* assigned to the donor bound OH stretch. Furthermore,
they reported bands near 3530 and 3730 cm™!, but size-selective
measurements described in refs 38 and 39 have shown that these
bands actually belong to the water trimer spectrum.

The frequency of the acceptor symmetric stretch mode was
determined in matrix spectra.***! Extrapolation of the spectra
from different matrices yields a frequency between 3655 and
3660 cm™ !, i.e., a shift between —2 and 3 cm™!. In the He
droplet spectra®’ this band was observed at 3654.4 cm™!, which
amounts to a shift of —2.2 cm™!. We computed a shift of about
—1 cm™! for the K = 0 — 0 transitions.

The donor bound and free OH stretch modes were observed
in lower resolution by Huisken et al.* A narrow peak at 3601
cm™!, shifted by —56 cm™' with respect to the monomer
symmetric stretch mode, was assigned to the bound OH stretch.
Apart from the reassignment, this agrees well with the (incom-
plete) high-resolution data for this band in ref 29. Absorption
intensity at 3735 cm™!, obtained by subtraction of two spectra,
was ascribed to the donor free OH stretch; this amounts to a
shift of —21 cm™! with respect to the monomer asymmetric
stretch mode. It is not at all clear which transitions tabulated in
Table 5 contribute to these bands. The He droplet spectra of
the water dimer?’ give a shift of —59.0 cm™! for the donor bound
OH stretch mode and two, not completely separated peaks with
shifts of —25.3 and —26.3 cm™! for the donor free OH stretch.
If we assume that the intensity is dominated by the K =0—0
transitions, we find shifts of —43 and —2 cm™! for the donor
bound and free OH modes, respectively, but there is a large
spread in the frequencies if K = 0 — 1 and K =1 — 0
transitions are also involved. It seems that our calculations yield
frequencies that are considerably too high, however, just as for
the acceptor asymmetric stretch mode. Note that we calculated
frequency shifts, not absolute frequencies, so that it does not
play a role that the HBB potential yields too-low OH stretch
frequencies of the free monomers.

Interesting additional remarks can be made regarding the He
nanodroplet spectra,’” which show bands for all four OH stretch
modes. Only for the acceptor asymmetric stretch mode a large
splitting (7.8 cm™') was measured, while for the other modes
only a small splitting (1.0 cm™' for the donor free OH stretch)
or no splitting was observed. A similar splitting of the acceptor
asymmetric stretch band was measured and explained by
interchange tunneling? for (D,0),. It should be kept in mind
that the acceptor asymmetric stretch mode is the only one for
which K = 0 — 0 transitions are forbidden. As explained above,
we believe that the peaks in the He droplet spectra assigned to
the acceptor asymmetric stretch mode belong toa K =0 — 1
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band; our calculations predict an acceptor tunneling splitting
of the correct size for this band. As also explained above, we
predict much smaller tunneling splittings for K = 0 — 0
transitions. This implies that the absorption intensity of all bands
in the He droplet spectra except for the acceptor asymmetric
stretch band is probably dominated by K = 0 — 0 transitions.

The donor and acceptor bend modes were observed by Paul
et al. in cavity ring-down spectra.*? A peak at 1600.6 cm™!, i.e,
a blue shift of 6 cm™!, was assigned to the acceptor bend,
probably involving a parallel AK = O transition. Our calculations
produce a shift of about 3 cm™! for the K = 0 — 0 transitions
in the acceptor bend mode. From three peaks at 1613.8, 1614.7,
and 1628.6 cm™! in the spectrum* it was estimated that the
donor bend frequency is 1615—1620 cm™!, a blue shift of more
than 20 cm™! with respect to the monomer bend. According to
ref 42 these bands are dominated by perpendicular AK = +1
transitions. Our shifts calculated for K = 0 — 0 transitions in
the donor bend mode are about 10 cm™'; for the K = 0 — 1
and K = 1 — 0 transitions they vary from —6 to 25 cm™'. It is
not clear which components dominate the intensities of these
bands.

IV. Summary and Conclusions

The 12d HBB potential for a water dimer with flexible
monomers obtained from ab initio calculations®® was used in
accurate calculations of the dimer VRT levels involving the
intermolecular rovibrational and tunneling states as well as the
intramolecular vibrations. The intermolecular VRT levels were
computed at three different levels of accuracy. At the highest
level we used a 6 + 6d model in which adiabatic intermolecular
potentials were obtained from calculations of the monomer
vibrational eigenvalues at each dimer geometric grid point, in
total for about 107 dimer geometries. The results from this model
were compared with 6d calculations in which the monomer
geometries were frozen either at the equilibrium geometry of
the free monomers or at their ground state vibrationally averaged
geometry. It was found that the results from the 6 + 6d model
agree well with the large amount of detailed experimental data
available from high-resolution spectroscopy. For most of the
quantities extracted from the spectra, the results of the two 6d
rigid monomer models are also in good agreement with
experiment and do not significantly differ from the 6 + 6d
results. An exception is the relatively large level splitting due
to acceptor tunneling. The 6d model with monomers frozen at
their equilibrium geometry overestimates this splitting by 19%
for (HO), and by 31% for (D,0),. The 6d model with
monomers at their vibrationally averaged geometry performs
considerably better, and the full 6 + 6d results agree well with
the measured tunneling splitting.

For the excited intramolecular vibrations we tested two 6 +
6d models: one in which the excitation was assumed to hop
from one monomer to the other one, depending on which
monomer is the donor or the acceptor in the hydrogen bond,
and one in which the monomer excitation was assumed to
remain localized on a given monomer irrespective of the dimer
geometry. These models cannot be used to compute the excited
state donor—acceptor interchange tunneling splitting, which is
considerably smaller than the corresponding splitting in the
ground state. The first model yields fully symmetric adiabatic
intermolecular potentials for the excited states, but produces
too-large interchange splittings, nearly equal to the splitting in
the ground state. The second model yields adiabatic intermo-
lecular potentials in which the monomers are not equivalent
and underestimates the excited state interchange tunneling
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splitting. Our tests show, however, that the frequencies of the
intramolecular vibrations are almost the same for the two
models. In most calculations of the frequency shifts of the
intramolecular modes with respect to the free monomer vibra-
tions we used the first model.

It is not easy to fully evaluate the quality of the calculated
frequency shifts by comparison with the experimental data.
High-resolution, rotationally and tunneling level resolved and
assigned, spectra are available only for the acceptor asymmetric
stretch mode. The calculations show that there are considerable
variations in the frequency of each intramolecular mode for
transitions involving different tunneling levels and different
values of the rotational quantum number K. Except for the
acceptor asymmetric stretch bands measured in high resolution,
it is not clear how much the different transitions contribute to
the (unresolved) peaks in the experimental spectra. Given the
very good agreement of the results for the intermolecular modes
with a large amount of experimental data, we find the results
for the intramolecular modes somewhat disappointing. The large
red shift of the donor bound OH stretch mode is correctly
predicted, but the value calculated for this red shift is too small
by more than 20%. Also in the smaller shifts of the other modes
we find relatively large errors. Similar errors were found in
studies of the intramolecular modes in the water dimer with a
“flexibilized” SAPT-5s potential® and with an empirical flexible
potential fitted to experimental spectroscopic data.'>** On the
other hand, it is satisfactory that our detailed calculations
including all ground and excited state tunneling levels provide
an explanation for the substantial frequency splitting between
the two acceptor asymmetric stretch peaks observed in He
nanodroplet spectra,’’ as well as for the fact that the other bands
in these spectra show much smaller or no splittings.
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